

Space Technology Overview AIAA Webinar Series 2020

Mr. James Reuter | Associate Administrator, Space Technology Mission Directorate | 06.29.2020

SPACE TECHNOLOGY PORTFOLIO

EARLY STAGE NNOVATION

 NASA Innovative Technology Drives Exploration **Advanced Concepts Space Tech Research Grants** Center Innovation Fund/ **Early Career Initiative**

PARTNERSHIPS AND TECHNOLOGY TRANSFER

Technology Transfer

LOW

SBIR/STTR PROGRAMS

- Small Business **Innovation Research**
- Small Business **Technology** Transfer

TECHNOLOGY MATURATION

- Game Changing Development
- Lunar Surface **Innovation Initiative**

TECHNOLOGY DEMONSTRATIONS

- Technology Demonstration Missions
- Small Spacecraft Technology

HIGH

Flight Opportunities

Technology Readiness Level

Reaching the Moon and Mars Faster with NASA Technology

GO Rapid, Safe, & Efficient Space Transportation

Solar Electric Propulsion (SEP) Nuclear Propulsion Technologies

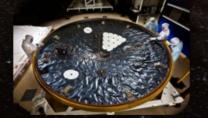
Thruster Advancement for Low-temperature Operations in Space (TALOS)

• Enable Human Earth-to-Mars Round Trip mission durations less than 750 days.

- Enable rapid, low cost delivery of robotic payloads to Moon, Mars and beyond.
- Enable reusable, safe launch and in-space propulsion systems that reduce launch and operational costs/complexity and leverage potential destination based ISRU for propellants.

Cryogenic Fluid Management

Green Propellant Infusion Mission (GPIM)



Rapid Analysis and Manufacturing Propulsion Technology

Expanded Access to Diverse Surface Destinations

Mars Science Laboratory Entry Descent and Landing Instrument (MEDLI 2)

Navigation Doppler LIDAR

Mars Entry Descent and Landing

Terrain Relative Navigation

Low-Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID)

- Enable Lunar and Mars Global Access to land large (on the order of 20 metric tons) payloads to support human missions.
- Land Payloads within 50 meters accuracy while also avoiding local landing hazards.

Safe and Precise Landing – Integrated Capabilities Evolution (SPLICE)

<u>Live</u>

0

Sustainable Living and Working Farther from Earth

Surface Power

In Space Manufacturing

Regenerative Fuel Cells

Synthetic

Biology

Astrobee

In-situ Resource Utilization (ISRU)

Conduct Human/Robotic Lunar Surface Missions in excess of 28 days without resupply.

- Conduct Human Mars Missions in excess of 800 days including transit without resupply.
- Provide greater than 75% of propellant and water/air consumables from local resources for Lunar and Mars missions.
- Enable Surface habitats that utilize local construction resources.
- Enable Intelligent robotic systems augmenting operations during crewed and un-crewed mission segments.

Note: Mid TRL and High TRL Technology Development for Life Support and EVA suits are HEOMD Responsibility

Integrated Systems for Autonomous Adaptive Caretaking

LUNAR SURFACE INNOVATION INITIATIVE

In-situ Resource Utilization

Collection, processing, storing and use of material found or manufactured on other astronomical objects

Sustainable Power

Enable continuous power throughout lunar day and night

Extreme Access

Access, navigate, and explore surface/subsurface areas

Enable affordable, autonomous manufacturing or construction

Lunar Dust Mitigation

Mitigate lunar dust hazards

Extreme Environments

Enable systems to operate through out the full range of lunar surface conditions

Transformative Missions and Discoveries

- Enable new discoveries at the Moon, Mars and other extreme locations.
- Enable new architectures that are more rapid, affordable, or capable than previously achievable.
- Enable new approaches for in-space servicing, assembly and manufacturing.
- Enable next generation space data processing with higher performance computing, communications and navigation in harsh deep space environments.

Laser and Optical Communications

SPIDER

Restore-L

CAPSTONE

Archinaut

Bulk Metallic Glass Gears

> In Space Manufacturing

Surface Robotic Scouts

Atomic Clock

Space Technology for Mars 2020 Mission

MEDLI2 (Mars Entry, Descent and Landing Instrumentation 2)

MEDLI2 is a next-generation sensor suite for entry, descent and landing (EDL). It collects temperature and pressure measurements on the heat shield and afterbody during EDL

TRN (Terrain Relative Navigation)

TRN gives a spacecraft the ability to autonomously avoid hazards we already know about and can land in more (and more interesting) landing sites with far less risk

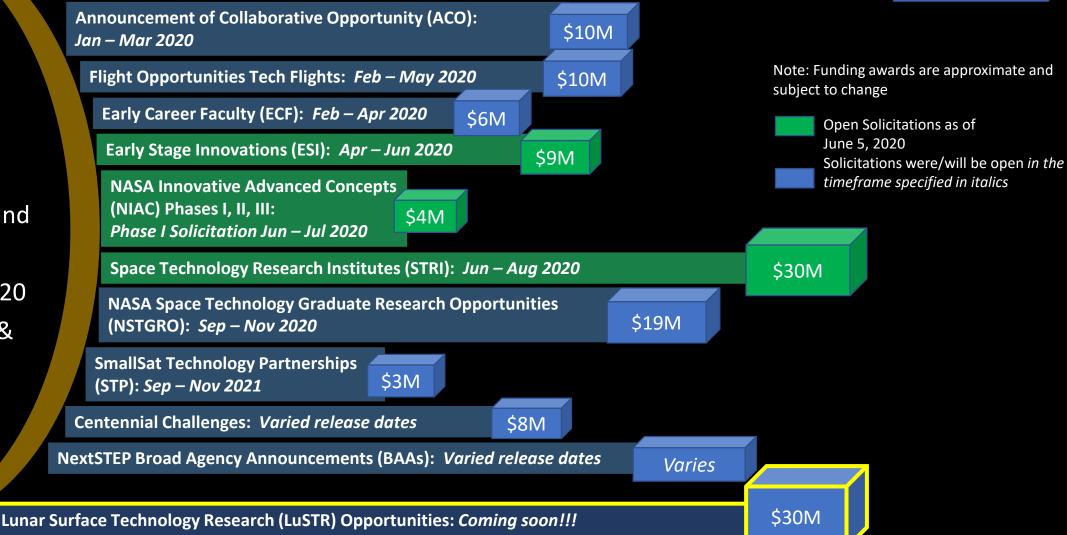
MOXIE (Mars Oxygen In-Situ Resource Utilization Experiment)

MOXIE will demonstrate a way that future explorers might produce oxygen from the Martian atmosphere for propellant and for breathing.

MEDA (Mars Environmental Dynamics Analyzer)

A set of sensors that will provide measurements of temperature, wind speed and direction, pressure, relative humidity and dust size and shape in the Martian atmosphere

STMD Opportunities for Academia and Industry


STMD Tipping Point Multiple Awards: Jan – Mar 2020

Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) Phases I, II, II-E, Civilian Commercialization Readiness Pilot Program (CCRPP), Sequential: Phase I Solicitation Jan – Apr 2020

\$212M

\$250M

Jan – Mar 2020 STMD anticipates awarding ~\$600M to academia and industry supporting 2020 solicitations & awards

STMD BY THE NUMBERS (FY 2019)

www.nasa.gov/spacetech

NASA