Tag: January 6

Tackling the Big Questions

‘We must continue to do the really hard things,’ said JPL’s Director in the 2025 AIAA SciTech Forum’s opening plenary session

By Anne Wainscott-Sargent, AIAA Communications Team

ORLANDO, Fla.– The 10th and only female director of NASA Jet Propulsion Laboratory (JPL) opened the 2025 AIAA SciTech Forum Monday, highlighting the hard questions that JPL answers in its unique role as a federally funded R&D center operated by CalTech for NASA.

Watch Full Session On Demand 

Laurie Leshin, who has been at the helm of JPL since 2022, shared how JPL’s work focuses on answering three fundamental questions: “What is our destiny on Earth?”, “Are we alone?”, and “How do we lead the future?”

She implored the audience to continue striving for knowledge. “If I have one message for you in this time of change in our country, it is we must continue to do the really hard things,” she said. “Our job as a nation in order to lead is not to do what’s easy…or what you can predict exactly how it’s going to go…Our job is to do the things that are ridiculously hard.”

Understanding Earth

Leshin pointed out that while JPL is most known for its work in space exploration, it also brings decades of history contributing to understanding Earth using cutting-edge space-based radars capable of measuring pollution, ocean rise, and urban heat, among other items critical to understanding climate change and predicting natural disasters. One important focus is identifying super emitters of methane, an odorless gas invisible to the naked eye that is responsible for 30–40% of global warming (due to its structure, methane traps more heat in the atmosphere per molecule than carbon dioxide, making it 80 times more harmful than CO2 for 20 years after its release). Runaway methane leaks in pipelines cost oil and gas companies $1 billion a year, she noted. Methane is now visible from orbit thanks to the EMIT tool attached to the International Space Station.

JPL also is finding and mapping heat islands in big cities such as Los Angeles and Houston, where concrete jungles are adding to the heat issue. Insights from the Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station, or ECOSTRESS mission, is helping cities find hot spots. It has led one neighborhood in Los Angeles to use a reflective coating on streets to lower one street’s temperatures by up to 4 degrees Fahrenheit, leading to a noticeably cooler environment for residents.

Leshin said JPL researchers are working with global partners to map Earth’s water to better understand how rivers and lakes respond to flooding. In a first-ever collaboration with the Indian Space Research Organisation (ISRO), JPL will launch the NISAR Earth-observation radar this spring that will help view changes to the Earth’s surface so people can prepare for volcanoes, earthquakes, and landslides. According to Leshin, it will provide “unprecedented eyes on Earth.”

Finding Proof of Life Beyond Earth

In exploring the question of “Are we alone?” Leshin observed, “In some ways I like to say we are in a space race with ourselves in trying to answer this question.”

There’s a race to find evidence of life beyond Earth, and the big questions is where will the evidence come from — Mars, the moons of Jupiter or Saturn, or an exoplanet?

JPL is tackling this quest across all those avenues and has made significant inroads over the last few decades studying the surface of Mars. Missions have gone from larger ground-based rovers to a new way of exploring the Red Planet from the air.

“Today we are there with Perseverance,” said Leshin, noting that the rover recently collected “incredible samples” from a rock that points to ancient life on Mars. The rover’s instruments detected organic compounds within the rock, which are essential to all known life. These rocks and other samples are housed in tubes inside Perseverance, but how and when they will find their way back to Earth for study is a big question. “Landing on Mars is really stupid hard,” she added.

Rethinking Mars’ Sample Return

JPL has spent significant time rethinking how it does Mars sample return. NASA is discussing the path forward with media on Tuesday, 7 January. A 2023 assessment indicated that returning Mars samples would take until 2040 at a price tag of $11 billion. JPL’s concept would cut the cost in half and the timeline to a decade. Leshin said the approach will include heavy industry collaboration to get these rocks back. NASA’s proposal will use the stacking technology that has successfully landed the last two rovers on Mars to get a big lander with a rocket on board down to the surface of Mars, load it with the sample tubes and returning it to Earth safely. She also indicated that she’s very open to leveraging SpaceX’s Starship vehicle to get the lander to the Red Planet, which wouldn’t occur for another decade at the earliest, she stated, adding that partners such as the European Space Agency will play a key role in getting the samples home.

Another exciting avenue for investigating evidence of life beyond Earth is through ocean worlds. Two months ago, JPL launched the Europa Clipper probe to Europa, a moon of Jupiter. “It’s doing great. It’s flying beautifully,” said Leshin, noting that it will fly by Mars on 1 March, and will come back to Earth before it heads to Jupiter, where it is expected to arrive in 2030.

“We think there are two Earth oceans worth of liquid water on Europa,” she added, explaining that the ingredients for life will likely be present beneath those oceans.

“One of the challenges with deep space exploration is you have to be patient,” said Leshin, who described the Europa effort as “a generational quest.” She noted the wait is worth it because “the science will be incredible.”

JPL also sees promise in exoplanets – deploying transit spectroscopy as one of the lab’s tools to discover distant planets that are so far away that they can only be detected through the brightness of an individual star. To date, NASA has found over 5,500 exoplanets.

The Nancy Grace Roman Space Telescope, scheduled to launch in October 2026, will provide an even wider of view of these planets and other galaxies.

JPL also is investing in autonomous capabilities and the next generation of robotics. One such innovation is EELS (Exobiology Extant Life Surveyor), a 14-foot snake-like robot. JPL is already testing a prototype, which is winding down frozen crevasses on Earth. “It’s got to be smart enough to make its own decisions,” she noted, adding that the JPL team had to innovate around the form factor as well as the avionics and how it works and “thinks.”

Leading the Future

In closing, Leshin said the work of JPL is focused on driving humanity forward through the forefront of technology. “We’re incredibly proud of the work we do. And we can answer the biggest, hardest questions if we dare mighty things together.”

Reaction to Leshin’s lecture was well received by attendees.

“It was a nice flyover of the work they do at JPL,” said Egbert Hood, an aerospace engineer at Lockheed Martin Aeronautics in Fort Worth, Texas. “It was interesting to hear of all the missions they have ongoing – and some for them had nothing to do with landing on a moon or planet, it was just exploration of space. It was good to get a new awareness of JPL.”

Amanda Simpson, CEO, Third Segment, expressed excitement for Leshin’s message. “We have to do the hard things! It brought to mind President Kennedy’s moon speech. Space is hard. If we only concentrate on doing the easy things then we’re not actually making any progress. The way we treat going off our planet tells us so much about ourselves. And to do that, we must do the things that are hard. To do that together and to challenge ourselves – those are the keys that are going to make the difference for the future. Inspiring the future is so critical for keeping this industry, this ecosystem in aerospace, moving forward to entice and inspire the future generations.”

CJ Negrete, an undergraduate student at Cal Poly Pomona in Los Angeles, previously interned at JPL, where she worked to increase the technology readiness level of oscillating heat pipe (OHP) technology, commonly used in high-heat density electronics and exoplanet detection. She credited Leshin’s presence as a plenary speaker as one reason she decided to attend the forum, saying that having a woman at the helm of JPL “is brand new and unheard of.”

“Dr. Leshin is leading the pack of what women are more than capable of doing in the industry and we have to come and support her,” she said.

 On Demand Recording Available

Watch Full Session On Demand 

.

Hypersonics Chief Details Journey of Building the World’s Most Speed-Defying Aircraft

2025 Durand Lecturer Delves into the History and Future Prospects of Supersonic Systems

By Anne Wainscott-Sargent, AIAA Communications Team

ORLANDO, Fla.– Kevin Bowcutt has spent over four decades advancing the field of hypersonic flight, notable for achieving speeds greater than five times the speed of sound, or faster than Mach 5.

As this year’s recipient of the AIAA Durand Lectureship for Public Service, Bowcutt, who serves as principal senior technical fellow and chief scientist of Hypersonics at The Boeing Company, shared how far hypersonic flight capabilities have come from its origins after World War II at the 2025 AIAA SciTech Forum in Orlando.

Watch Full Session On Demand 

The age of hypersonics began almost 76 years ago. In 1949, the U.S. Army took a captured German V2 rocket and added a WAC Corporal second stage to the top before launching it into the atmosphere from White Sands Proving Grounds. The experimental rocket achieved Mach 7 or 8, depending on the atmospheric temperature at the point of entry, noted Bowcutt.

Over the next 50 years, hypersonics was relegated to the domain of rocket-propelled systems, with both NASA’s Apollo space capsule and later the Space Shuttle achieving hypersonic speeds, with the capsule reaching Mach 37, or almost 25,000 miles per hour, on its return from the moon.

Bowcutt interspersed personal anecdotes of his own journey in the field while highlighting the development challenges of hypersonic systems. He emerged on the scene in 1984 as a doctoral student at the University of Maryland. Under the tutelage of John Anderson Jr., a leading authority on hypersonics and the former professor emeritus in the university’s Department of Aerospace Engineering, Bowcutt began his first foray into advancing the field of hypersonics. His task: to take rudimentary forms of parametric geometry generation, computational fluid dynamics, and mathematical optimization to find complex curved aircraft shapes that rode on their own shock waves and performed better than the state of the art.

“It worked. I found shapes that performed quite a bit better,” he shared.

In February 1986, following the Challenger disaster, President Reagan announced the X-30 National Aero-Space Plane program. Bowcutt spent seven years on the effort, helping design a horizontal takeoff and landing aircraft that could fly all the way into orbit.

“It was exciting. The thought of doing this as a 25-year-old at the time was just thrilling,” he recalled. “We discovered a lot of things. One of them was a single stage orbit is not possible. It wasn’t then and it still isn’t today. We learned how to design air-breathing hypersonic vehicles. What we learned about scramjet (supersonic combustion ramjet) engines in this program eventually flew on X-43A by NASA,” he recalled.

Today, that same enthusiasm is evident in Bowcutt, who has been named an AIAA Fellow, a Fellow of the Royal Aeronautical Society, and a member of the National Academy of Engineering.

“I know from my 40 years of experience that hypersonic vehicle design is really fun and interesting because it’s really hard and very challenging,” he explained.

“One of the things we want to do is get from point A to point B in the world faster than we currently can at about Mach 0.8,” he added.

Bowcutt detailed the multitude of challenges of hypersonic aircraft design, including the balancing act of navigating extreme aerodynamic heating and temperature spikes, which results in the introduction of different materials, notably high-temperature metals and ceramics. But those materials are not necessarily easy to build or affordable to buy, he noted.

The hypersonics pioneer also described both the advantages and challenges of different hypersonic systems, explaining the effects of temperature, propellant type, and size of an engine that could affect drag and other performance issues on the aircraft. Often solving one challenge created another.

“It’s challenging to integrate a relatively larger engine on an airframe,” said Bowcutt to illustrate one common difficulty with these systems. “These vehicles must be highly integrated to make the whole system work together – every component, every discipline, the aerodynamics, propulsion, thermal protection, the structures – are all interrelated and interact with each other. You’re operating on relatively small margins.”

A positive development, he noted, was the emergence of multidisciplinary design optimization, developed over the last 25 to 30 years, which he credits with helping hypersonic system designers optimize their designs through modeling tools to help solve integration challenges faster.

The idea of air-breathing hypersonic flight – where the plane gleans oxygen for combustion from the air, just as conventional jets do – began in 1958 when a NACA researcher came up with this idea, “Could we burn fuel in a supersonic air stream?”

Bowcutt said it took five decades to prove the technology. Not carrying oxygen on board for fueling the engine significantly reduced the vehicle’s size and weight. In 2004, NASA flew the X-43A with Boeing support, and proved the aircraft could generate positive net thrust with a scramjet propulsion system. It set several airspeed records for jet aircraft. At the time, it was the fastest jet-powered aircraft on record at approximately Mach 9.6.

In the 2010–2013 timeframe, the Boeing X-51 Waverider, an uncrewed research scramjet experimental aircraft for hypersonic flight, was successfully flown by the Air Force with participation of DARPA, proving that air-breathing hypersonics could be practical.

“For good or bad, we now have air-breathing cruise missiles that fly at hypersonic speed,” said Bowcutt, adding that the industry now seeks to achieve hypersonic reusable flight in the form of point-to-point travel and access to space using aircraft flight approaches.

During the Q&A, Bowcutt was asked if he thought passenger hypersonic aircraft was feasible.

He indicated yes, noting that Boeing in 2018 began work on designs for an aircraft that could fly people globally at hypersonic speeds.

“I had the opportunity to explore the design, looking at the future possibility. We innovated a number of things that suggested to us that it was at least technically feasible. It’s another thing to look at the market and the economics,” Bowcutt said.

Environmental concerns, he added, could be the biggest hurdle, one example being concerns about airport noise since supersonic aircraft engines use small fans, which result in higher jet noise.

Also, engine emissions are another issue. “When you fly at 40,000 feet, using sustainable fuels allow carbon dioxide to be recycled in the bio-environment. If you fly at 100,000 feet, CO2 doesn’t cycle very quickly. Not only that, water is a greenhouse gas as well as CO2 and water and nitric oxide both destroy atmospheric ozone. So, there’s some interesting challenges we still have to conquer.”

A final question to Bowcutt was what has he learned from the successes and failures he has experienced in his career.

“I tend to not be risk averse. I tend to like to push the boundary,” he responded. “When you’re pushing the edge of the envelope, you just have to know that not everything is going to go perfect. But the thing I find thrilling is what you learn from it. That’s what makes life exciting – to continue to learn, to grow, to understand the world around us, and how to manage and tackle it.”

Following the talk, Dilip Srinivas Sundaram, associate professor at the Indian Institute of Technology Gandhinagar, called Bowcutt’s presentation “very interesting. …I don’t think prior to this lecture I had a good understanding of the complexity of hypersonics flight. This talk gave me a sense of how difficult it is. It may take another 40 years to realize hypersonic flight.”

“I think Dr. Bowcutt gave a very comprehensive story of hypersonics from where it began and even new details that a common person might not know like the U.S. taking an old missile, which started the journey of the U.S. into hypersonics,” added Alex Cintron, a member of the AIAA High Speed Air Breathing Propulsion Technical Committee who is pursuing a master’s in aerospace engineering from the University of Florida in Gainesville.

“One of my goals is to go into hypersonics,” he added, after getting a photo with Bowcutt on stage.

 On Demand Recording Available

Watch Full Session On Demand 

SpaceX Falcon 9 Launches on First Dedicated Starlink Mission of 2025

Spaceflight Now reports, “SpaceX completed its first Starlink mission of the year on the first Monday of 2025. Onboard the Starlink 6-71 mission were 24 V2 Mini satellites headed to low Earth orbit. Liftoff of the Falcon 9 rocket from Space Launch Complex 40 (SLC-40) at Cape Canaveral Space Force Station happened at 3:43 p.m. EST (2043 UTC), which was the end of the available three-hour window.”
Full Story (Spaceflight Now)

 

 

Video

SpaceX Falcon 9 launches 24 Starlink satellites from Cape Canaveral at 3:43 p.m. EST, January 6.  (Launch at 01:01:06 mark)
(Spaceflight NowYouTube)